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Two versus many: the geographical dimension in NEG models 
 
 

Abstract 
Results of  core-periphery models dramatically change with the number of regions in which the 
national economy is divided and with its geographical structure. Concentration in an n-region 
setting can simply be reversed into dispersion by adding or deleting just one region. The influence 
of the geographical dimension is examined for the centre-periphery model (CP) and the footloose 
enterpreneur model (FE). The results show that the urban size distribution of the FE model can 
be modelled invariant to the number of regions, but only when the economic parameter space 
has a low agglomeration tendency. This is not true for the predicted spatial distribution: as n 
increases, the agglomerations are predicted on a different place. Compared with the FE model, 
the CP model produces both size and spatial distributions that are much less invariant to n.   
 
1. Introduction 
The geographical dimension of NEG models is essentially defined by the nxn distance matrix D 
between n regions, which together with the transport cost parameter T determines interregional 
transport costs1. In a two-region setting, however, there is only one geographical connection to 
travel for firms, workers and goods. Under the usual assumption that dij = dji for any pair of 
regions i and j D then reduces to a scalar d that can be normalized to unity by adjusting T. For the 
two-region model this implies that its geography is trivial: the two regions can be anywhere at any 
distance. Adding a third region requires the inevitable choice to put it somewhere relative to the 
other two and is in fact the decision to let geography enter the stage or not. However, a minimum 
of three regions is a necessary but still not sufficient condition for a non-trivial geography. When 
all regions are at equal distance on a circle or a torus, no region has any locational advantage 
over the other. This option for a “neutral geography” Brakman, Garretsen, and Marrewijk (2008) 
allows a pure economic analysis without results that are biased by “non-neutral” geography.  

From the geographers point of view the very concept of a neutral geography is a 
contradiction in terms. In three-dimensional reality locations can only be spatially neutral on a 
homogeneous torus or globe surface without oceans, rivers, mountains or any other obstacle for 
transport that would make some locations better accessible than others. In other words, for NEG 
models that take their “G” seriously, non-neutrality is the sine qua non of the geographical 
dimension, invariant to whether the original core-periphery (CP) model or other economic variants 
like the vertical linkages (VL) or footloose entrepreneur (FE) model are used.  

The necessary and sufficient condition for a non-trivial geographical dimension is 
therefore a  minimum of three regions in non-neutral space. This makes the the study of model 
behaviour less easy because now it is the interplay between the economic and the geographical 
dimension that determines long run equilibria and their stability. In fact, there is even a third 
dimension because it is well known that NEG equilibria are very sensitive to the initial regional 
distribution of manufacturing workers who are the agents that are assumed to be interregionally 
mobile and sensitive to agglomeration forces. Krugman (1991) himself was the first to note that 
this path dependency implies that “history matters”. 

This paper will follow these three dimensions. First, the economic parameter space E 
sets out the main characteristics of economic behaviour. In all model variants the most important 
ones are the relative size of the manufacturing sector (δ), the elasticity of substitution (ε) and the 
transport costs (T). Second, the model size n and the corresponding nxn distance matrix D 
defines the geographical component for an n-region model. Third, the initial distribution of 
manufacturing labour over the regions Λ = {λ1 , λ2, .., λn} represents the historical component of the 
model.  

                                                      
1 First nature geographical factor endowments like soil, climate etc are not considered here. The acronym NEG (New 
Economic Geography) covers the original core-periphery model as well as other versions. ParameterT sets the “iceberg”’ 
fraction 1/T of a transported good that melts away over one distance unit. See Fujita, Krugman, and Venables (1999) or 
Baldwin et al. (2003)  for an overview and introduction to NEG models. Ottaviano and Robert-Nicoud (2006) discuss the 
main features of current classes of NEG models. Annex A summarizes the main equations of the CP and the FE model 
used here. 
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Because we want to know to what extent conclusions drawn from one economic model 
will be relevant for the same economic model with a different spatial structure, the analysis in this 
paper is essentially geographical: instead of applying different E’s and Λ’s on an identical D0 we 
will examine the effect of different D’s using an identical E0 and Λ0. This is an essential difference 
with the major part of the NEG literature where the simulation of many different economic 
parameter spaces is the rule. We can not do both at the same time but a minimum of variation of 
E0 is feasable. The CP model and the FE model are analysed using two economic parameter 
spaces E1 and E2 defined as follows: 
 
E1 : δ=0.3, ε=3 and T=1.35 
E2 : δ=0.4, ε=4 and T=1.49 
 

This gives four cross-combinations of {E1, E2} and {CP, FE} which are labelled as model 
CP1, CP2, FE1 and FE2. As will be illustrated in the next section, the four models not only 
produce quite different size distributions but also their spatial outcome is quite different. The 
values chosen are typical for a medium-high and a medium-low aggomeration outcome and stem 
from simulations with many economic parameter configurations on one and the same geography 
as done by Stelder (2005) and Brakman et.al. (2008). The choice for the CP model and the FE 
model is - admittedly - a disputable matter of taste. The CP model is the original and most basic 
NEG model with relatively strong agglomeration tendencies. The FE model is its main competitor 
as it is also simple but has an analytical solution and less strong agglomeration tendencies. As 
will become clear later on, despite the fact that these four models cover a relatively wide 
spectrum of economy topologies, their response to our geographical sensitivity analysis shows 
interesting similarities. 

For Λ0 only the flat initial distribution is used in which λ1 = λ2 = … = λn. This “no history 
assumption” means that all regions are assumed to be equal in size from the start and simplifies 
the analysis enabling us to examine the general agglomeration tendencies of specific 
geographical spaces. Note that this assumption can only be used in non-neutral space because 
in neutral space a flat initial distribution is an immediate long term equilibrium. It’s important 
advantage is that we do not need many model runs with random initial distributions for our 
analysis as is common practice for neutral geographies (Fujita, Krugman & Venables, 1999). In 
non-neutral space the resulting equilibria from many random runs will evidently form a normal 
distribution around locations that have a structural spatial aggomeration advantage. When the 
number of simulations goes to infinity these normal distributions will obviously converge to 
“spikes” on exactly the same places as the simulation with Λ0 predicts directly (Stelder, 2005). 

In order to keep the analysis tractable, we will abstract from any cross product of E, D 
and Λ such as a region-specific δ or ε, or a D-specific T such as lower transport costs for flat land 
relative to the cost of transport across mountains or waterways. 

Section 2 defines the main classes of geographies of which the horizontal line market is 
the most simple form of a non-trivial geography. This geography is used in section 3 which 
presents the model results going from two to many regions. Section 4 repeats the analysis for 
two-dimensional models. Section 5 summarizes our conclusions and reflects on relevant future 
research issues.   
 
 
2. Classes of  geographies 
The structure of an n-region NEG model is basically that of a network with n nodes and m 
connections between them. An important implicit model assumption is that agents minimize 
transport costs which implies that goods are traded between regions i and j along the shortest 
path through the network. A more precise definition of D is therefore that it holds all shortest path 
distances between the n regions given the m network connections. 

The relevant types of geographies are here classified according to their eucledic 
dimension and the properties neutrality and symmetry. First, we will redefine spatial neutrality 
more formally as the case in which every region has the same potential P: Pi = Pj  œ i,j with Pi = 
1/Σj dij.  
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Figure 1. Classes of geographies 
 
 
1a. Neutral space in ú2  
 

 
1d. Symmetric space in ú 
 

 
1f. Asymmetric space in ú2 
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1c. Neutral space in ú3 

 
1h. A geographical grid for Italy 

 

 

 
1e. Symmetric spaces in ú2 
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Figure 1a shows a neutral space of 6 locations on an equidistant hexagonal network in ú2. Note 
that in order for the neutrality condition to hold not all connections need to be of equal distance 
because the example in Figure 1b is also spatially neutral. Figure 1c shows the equivalent of type 
1a as an equidistant network on a globe in ú3.  

Next, the simplest introduction of non-neutral space is to delete one connection in Figure 
1a which cuts the hexagon into a line segment congruent to a straight line in ú (Figure 1d). The 
assumed equal distances between all direct neighbouring locations leads to a special property 
which we will here define as symmetry. The symmetry condition holds when œi with Pi < Max (Pi)  
›j…i for which Pi = Pj . Due to this property, model 1d is a discrete approximation of a Hotelling 
continuous line market where two identical firms can hold spatially mirrored equal market shares. 
Section 3 and 4 will show that the (non)existence of symmetry is important because it has a 
dominant influence on the urban distribution in the long term equilibrium. 

In the same way, the continuous economic plane in ú2 can be approximated by 
symmetric networks as depicted in Figure 1e, of which the hexagonal example at the bottom is 
the familiar urban landscape of central places. The crucial difference with the world of Christaller 
and Lösch, however, is their boundedness because in any NEG model n<4. Finally, we enter the 
world of real geographies when symmetry no longer exists and the network can be of any form. In 



 5

Figure 1f only one location of the square grid in Figure 1e is deleted which gives location B a 
unique value Pb lower than the highest potential value Pa. If more points are deleted according to 
the geographical shape of a country (Figure 1g) we obtain the geographical grids as introduced 
by Stelder (2005). Figure 1h shows a geographical grid for Italy. 

For the purpose of this paper it is important to stress an essential difference between an 
asymmetric geography like Figure 1h and a symmetric geography like the horizontal line in Figure 
1d. This is related to how we want to interpret model size. Starting with a two-regional model A, if 
in a larger model B we increase the number of regions from 2 to 4 by simply adding an extra 
region at the left and the right at the same distance as the distance between the original two 
regions, the line ”becomes longer” and Db(1,2)=Db(2,3)=Db(3,4)=1 if Da(1,2)=1. The other 
interpretation would be that for another larger model C we keep the size of the line in model A 
constant at 1 and redevide this distance over four regions in stead of two. The line then “gets a 
higher resolution” and Dc(1,2)=Dc(2,3)=Dc(3,4)=0.33. These two interpretations will obviously lead 
to different results but model C can simply be rescaled back to model B by adjusting the transport 
parameter T in equation (3) of Appendix A so that transport costs Trs between two neighbouring 
locations r and s are the same in B and C. In our vocabulary: combined with a specific economic 
parameter space Eb0 and Ec0  the models using Db and Dc will behave identically when n 
increases. In section 3 therefore only the simple first interpretation of model B will be used. 

For asymmetric models, however, it does make a difference whether we increase the 
size or the detail of the model. Let us take a land-locked country like Austria as an example in 
analogy to the geographical grid of Italy in figure 1h. Increasing the size according to the first 
interpretation would imply extending it with parts of its direct neighbours Germany, Switzerland, 
Italy, Slovenia, Hungary, Slovakia and Czechia. This would introduce international trade in the 
model while the second interpretation would only model Austria itself in more geographical detail. 

It is beyond the scope of this paper to examine both options. The response of the model 
to higher resolutions and the related question of how much geographical detail is relevant for 
economic agglomeration analysis is an issue in itself and will be examined in future work. 
Therefore in this paper only the first interpretation will be used: increasing the size of the model 
by adding extra regions while keeping the geographical resolution constant. 

In section 3 the influence of geographical size on model behavior is analyzed for  
geographies of type 1d. In section 4 the analysis is repeated for two-dimensional geographies of 
type 1e and 1f. Section 5 concludes and reflects on relevant future work.  
 
 
3. The influence of geographical size in one-dimensional space 
In this section we will restrict ourselves to the simplest form of a non-neutral geography: a one-
dimensional space on a horizontal line market as depicted in figure 1d.  
 
 The models were tested for the range n=3 to 100 using the initial flat distribution Λ0 with λ1 = λ2 
=…=λn. Due to the non-neutral geography some regions have better access to competing 
markets than others which leads to a long term equilibrium with m<n agglomerations where all 
manufacturing labor has become concentrated (“cities”) and (n-m) remaining locations from which 
all manufacturing labor has moved away and have only agricultural labor left (“villages”). 

As an example of the full range of all 97x4 simulations for all four models Figure 2-4 show 
the location and size of the cities in the long term equilibrium for n=22, n=23 and n=93 
respectively.  
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Figure 2. Long term equilibria for a horizontal line model with 22 locations 
Regional shares of national manufacturing labor 

FE2
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CP1
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CP2

 
 
Figure 3. Long term equilibria for a horizontal line model with 23 locations 
Regional shares of national manufacturing labor 
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Figure 4. Long term equilibria for a horizontal line model with 93 locations 
Regional shares of national manufacturing labor 
 

FE2
1   5   9    13    17   21   25    29    33    37    41    45    49    53    57    61    65    69    73    77    81    85    89    93  

FE1
1   5   9    13    17   21   25    29    33    37    41    45    49    53    57    61    65    69    73    77    81    85    89    93  

CP1
1   5   9    13    17   21   25    29    33    37    41    45    49    53    57    61    65    69    73    77    81    85    89    93  

CP2
1   5   9    13    17   21   25    29    33    37    41    45    49    53    57    61    65    69    73    77    81    85    89    93  
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The comparison between figure 2 and 3 reveals how sensitive small models are when going from 
even to uneven numbers. The CP1 model predicts two small second order cities in the centre 
when n=22 but one large central agglomeration when n=23. The central market captured by 
location 12 in the latter case has to be shared between location 11 and 12 in the first case who 
have a mirrored but equally competitive spatial market power. The same type of shift happens for 
model FE2. Figure 4 shows how the predicted city structure becomes more differentiated for 
larger models. 

The model simulations have been examined with respect to their size distribution and 
locational structure. First, in order to measure the model behaviour as n increases, we need a 
slightly modified Herfindahl index that is invariant to n for otherwise identical urban hierarchies. 
This Urban Herfindahl Index (UHI) is introduced in Appendix A. Figure 5 gives the UHI of CP1, 
FE1, CP2 and FE2 for n increasing from 3 to 100. The effect of going from even to uneven 
numbers is clear from the very volatile results for small values of n. The UHI jumps from high 
values for n=3,5,7,9 to low values for n=4,6,8,10.   

This effect becomes less important for larger values of n, although CP1, FE1 and CP2 
remain to show substantial fluctuations going from n to n+1. The most stable model is FE2 that 
has an almost constant UHI for n>20. The UHI for CP2 and FE1 also seems to converge to a 
constant value, but not untill n has become 60 or larger. As expected, CP1 and FE1 have a 
significantly higher centripetal tendency compared with CP2 and FE2 because higher values for σ 
and τ lead to more spreading2.  

These results are a strong indication that analytical or numerical results from small 
models can not be generalized to larger systems. Apparently the “degrees of freedom” for cities 
to grow or decline increase as the model expands. Figure 2 suggests that a minimum of 20 (FE2) 
to 50 (CP1, CP2 and FE1) locations is necessary to derive conclusions from a NEG model that 
are robust to model size. 
 
Figure 5. Urban Herfindahl Index for a horizontal line with increasing size 
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2 The higher value of δ in CP2 and FE2 works in the opposite direction, but this was done because keeping δ at 0.3 made 
the centripetal forces too low compared with CP1 and FE1. 
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This is, however, yet half of the story. The models do not only predict the size of the cities but 
also their location. To what extent is the predicted spatial distribution invariant to n? Figure 2-3 
already showed that cities are predicted at different places in models of different size and the 
interested reader can comes to his own intuitive conclusion by downloading a full visual 
presentation of all 4x97 simulations for the four models3. But how do we systematically compare 
a 20-region model with a 40-region model in this respect? The results discussed above suggest 
that we should skip the smaller values of n. We can then check whether the stability found in 
Figure 5 of the size distribution for models larger than 50 regions is also valid for the spatial 
distribution. 
 
An impression of the spatial stability can be achieved by selecting the 20 middle regions of all 
models for the even values of n with 50 < n < 100. That is, we start with the model result of 50 
locations and monitor the size variation of the 20 middle regions for n = {50, 52,..., 100}. Every 
increase from n to n+2 is then interpreted as an extension of one region at the left and right end 
of the horizontal line and we evaluate how this affects the spatial distribution of the original 20 
middle regions. In order to correct for scale effects of larger systems the size distribution of the 20 
middle regions is rescaled to a total population of one for all values of n. After this rescaling, the 
variation of the population of each of these 20 locations can be calculated over the 25 models of 
increasing size (n=50,52,..,100). The results are shown in Figure 6. 
 
On average the order of stability (FE2 > CP2 > FE1 > CP1) is the same as in Figure 1 but CP1, 
CP2 and FE1 show very mixed patterns for individual locations. Over the model range 50<n<100 
FE1 predicts very different values for region 9 and 12 but is relatively stable for the most centered 
regions 10 and 11. Moreover, we should be aware that the lowest variation coeffient found (0,89 
for region 10 in model FE2) is still very high4. Figure 7 illustrates this by showing the predicted 
size of region 10 in model FE2 for n = {50, 52,..., 100}. In 10 out of all 25 models region 10 gets 
no value at all and the non-zero values are very volatile for n. The predicted value for region 10 
seemed to become stable for n>90, but this was checked by extending the range of simulations 
to n=120. Clearly, in the range 100 < n < 120 region 10  becomes unstable again. 
 
Figure 6. Variation coefficient for the 20 middle regions of models with 50 < n(even) < 100   
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3 Find the relevant presentation at [ to be added]  
4 A value of 0.5 means that the average absolute deviation from the mean is 50%. 
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Figure 7. Size of the 10th of the middle 20 regions predicted by model FE2 
  % of total middle 20 regions 
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4. Increasing model size in two-dimensional space 
The stability analysis was repeated for two-dimensional symmetric geographies of type 1e in 
Figure 1 using an m*m square grid for m={3, 4, .., 30} which makes the increase of the model 
size quadratic following n = {9, 16, 32,..., 900}. The results are given in Figure 8 and lead to two 
conclusions. 

First, from n = 9 to 225 we can see the returning pattern of alternating high and low 
agglomeration when changing from even to uneven numbers. This corresponds with the 
fluctuating values of the UHI for n = 1 to 25 in Figure 5. Apparently this “geographical” effect is 
more dominant in the twodimensional case because CP1 and FE1 behave exactly the same over 
the range n=9 to 144 (m=1 to 12), while in Figure 5 this is only the case for n(m) =1 to 8 . 

Second, Figure 8 shows more or less the same stability properties of the four models but 
now convergence to stability only starts to appear for much larger models than in the one-
dimensional case of Figure 5. FE2 becomes stable for n>100. For the other three convergence (if 
any at all) should not be expected for values of n < 1000. The intuitive explanation of this different 
behaviour is that agglomeration forces have more degrees of freedom in two-dimensional space 
than on a horizontal line. Because centripetal and centrifugal forces have their influence on 
manufacturing labor in other locations in all directions, more spatial hierarchy configurations 
become possible. The stable value of the UHI to which the FE2 model in Figure 8 converges is 
19, which is ten times higher than the stable value of 1,9 found in Figure 5. 
 
Figure 8. Urban Herfindahl Index for a square grid with increasing size 
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Figure 9.  Increasing the size of an asymmetric model of type 1f 
 

n=8 n=21 n=40  
 
How do the results look like when asymmetry is entered in this model? As discussed in section 2, 
a model of type 1f in Figure 1 is the most simple form of an asymmetric two-dimensional space. 
Figure 9 shows how increasing size is interpreted in this case. For m=3 the upper right location is 
deleted which makes n=8. Next, for m=5 the three upper right locations are removed which 
makes n=21 etc. As in the previous case a series of 30 models was created for m={3, 5, 7, ..., 57} 
which now in total size go up to the largest model of 2465 locations. 

The results given in Figure 10 show approximately the same fluctuations over the range 
n=400 to 900 as in Figure 8. Note that the steep jumps in the range of small models due to even 
and uneven numbers are now disappeared because m only increases over uneven numbers. FE2 
is again by far the most stable model but on average all UHI values are 40% or more higher than 
in the symmetric case (see table 1). The size range where the models start to become stable is 
also higher. FE2 reaches stability around n=200 and for FE1 and CP2 stability, or at least 
fluctuations around some stable level, starts to emerge beyond n=1500. This did not show up in 
Figure 8 were the 30 simulations did not go beyond n=900. CP1 shows  no stability at all.   
 An exploratory analysis revealed that the stability of the locational structure in model 1e 
and 1f  is just as weak as was shown for the horizontal line model in Figure 6-7. For model 1e the 
stability of the center 4x4 block of locations was examined for the ten square mxm models with 
m={12,14,..,30}. The average variation coefficients found were about 20% lower than the values 
mentioned in Figure 6 but this may be related to the short series of ten size expansions in which 
some of the 16 locations in the centre 4x4 block remain zero in all model sizes. Expanding the 
series to m=60 or more should be required but goes beyond our present computer capabilities. 
The exact measurement of locational stability is questionable for the asymmetric model in figure 
9. In a symmetric model we can take the middle 20 regions on a line or the 4x4 middle block of a 
square grid but which part of the models in Figure 9 should we take? The grey shaded block in 
the model with n=21 seems logical but has no one-to-one relation with either one of the two grey 
blocks in the n=40 model. For the light grey area variation coefficients of roughly the same size 
were found as for the square model.  
 
 
Table 1.  Average value of the Urban Herfindahl Index 
Average over the 15 largest models of Figure 8 and Figure 10 
 

Model CP1 CP2  FE1 FE2
a. symmetric type 1e (fig 8) 132 42  69 19
b. asymmetric type 1f (fig 10) 183 74  96 26

ratio b/a 1.4 1.8 1.4 1.4
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Figure 10. Urban Herfindahl Index for an asymmetric grid with increasing size 

0

50

100

150

200

250

300

350

8 21 40 65 96 13
3

17
6

22
5

28
0

34
1

40
8

48
1

56
0

64
5

73
6

83
3

93
6

10
45

11
60

12
81

14
08

15
41

16
80

18
25

19
76

21
33

22
96

24
65

Number of regions

CP1 FE1 CP2 FE2

 
 
5. Concluding remarks 
 
In the literature analytical results for NEG models are mainly achieved for two-region models. The 
computer simulations presented in this paper show what is logical to expect but difficult - if not 
impossible - to derive analytically: multiregional models behave different from the two-region 
model and large models behave different from small models. The extent to which they do 
depends on the economic structure of the model and their parameter values. The results in this 
paper clearly indicate that model configurations with a high agglomeration tendency are less 
robust to model size and the CP model leads to much more volatile results than the FE model. 
The latter can be configured to a high level of invariance to model size, but even in a perfectly 
homogeneous geographical space like a horizontal line stability only starts to appear when the 
model has 20 regions or more. In two-dimensional space this ‘stability threshold’ rises to 100 and 
when a minimum of asymmetry is introduced the minimum number of regions becomes 200. 
Other model configurations with more centripetal forces do not converge to any stability in two-
dimensional space or only when the models become very large. 
 These results suggest that we should carefully design our models when real geographies 
are implemented. The decision on whether we should model a country at state, province, county 
or city level, or with or without foreign trading partners, usually depends on issues like data 
availability or the assumed relevance of geographical detail and international trade. This analysis 
shows that the choice of the number of regions is an issue in itself. Simple two-dimensional 
spaces with less than 50 regions should be avoided. Real geographies should preferably have a 
lot more. 
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Appendix A.  The main equations of the CP model and the FE model 
 
Following the standard notation of Fujita, Krugman & Venables (1999) and Brakman, Garretsen & 
van Marrewijck (2008) the core equations of the CP model are:  
 

(1) rrrr wy φδδλ )1( −+=  

(2) 
)1/(1

1

11
ε

εελ
−

=

−−







= ∑
R

s
srssr wTI  

 
(3)   Trs = TD(r,s)

 
 

(4) 
ε

εε
/1

1

11







= ∑
=

−−
R

s
rrsrr ITYw  

 
In (1) for every region r yr is total income, δ  is the fraction of income spent on manufacturing 
goods, wr is manufacturing wages, λr is the regional fraction of national manufacturing 
employment and φr is the regional frcation of national agricultural employment. Next, in (2) Ir is 
the regional price index and Trs is the iceberg transport costs indicating the number of goods 
needed to be shipped from region r in order to have one unit of goods arriving in region s. 
Equation (3) shows that this is equal to the transport cost parameter T in the case of a two-region 
model with D(1,2) = 1 and raised to the power D(r,s) in an n-region model. Finally, in (2) and (4) ε 
is the elasticity of substitution derived as ε = 1/(1 - D) with D being the substitution parameter in 
the aggregate utilty function. 
 
System (1)-(4) determines the short term equilibrium value of wr given the parameter values for δ, 
ε and T space (this is the economic parameter space E0 mentioned in the paper) the and the inital 
values of λ (Λ0). 
 
One of the assumptions behind the core equations of the CP model is the production function for 
manufacturing (M) firms in which manufacturing labor is the only product factor with increasing 
returns to scale. Following Robert-Nicoud (2005) this defines total costs C for the typical M-firm 
producing x(i) quantities of manufacturing good i as 
 
 (5) C(x(i)) = wm [F + βx(i)]  
 
with F and β as the fixed and variable costs parameters5 and wm indicating the wage in the 
manufacturing sector. It is in this equation where the CP model differs from the footloose 
entrepreneur model (FE) which uses 
 
 (6) C(x(i)) = wm F + wa βx(i)] 
 
where wa is the wage in the agricultural sector. The production function (6) has fix costs of skilled 
(manufacturing) labor and variable costs of unskilled (agricultural) labor (Forslid & Ottaviano, 
2003). This makes the equations (2) and (4) no longer recursive because in the FE model the 
price index equation (2) simplifies to: 
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5 These parameters do not show up in (1)-(4) due to some parameter normalizations. See Brakman et. al. (2008) chapter 4 for details. 
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The FE model equations (1), (3), (4) and (7) enable an analytic solution in stead of the numerical 
solution that is needed in the CP model. However, as any programmer will quickly find out, the 
reduced form equation for the wages in the two-region case as presented in Brakman et. al. 
(2008) or Forslid and Ottaviano (2003) becomes too long and cumbersome for 3 or more regions 
so numerical techniques are needed after all to find the analytical solution. 
 
Finally, the determining of the long term equilibrium is the same for both models. Given the short 
term equilibrium for wr the model assumes that manufacturing workers migrate to regions with the 
highest real wage ωr according to 
 

(8) ωr  =  Wr Ir
-δ 

 
and a migration reaction relative to the regional deviation from the average national real wage ώ: 
 
 (9) λr,t+1 =  η λr,t   ωr / ώ 
 
Here η is a migration sensitivity parameter and index t indicates the iteration number. The model 
simulation stops when real wages are equalized across the regions and convergence is reached 
to the long term equilibrium Λt* when for œ r  λr,t*+1/ λr,t*  < (1+ κ ) 6. 
 

                                                      
6 In all simulations used in this paper η is set to 1 and the break-off condition κ is set to 0.0001.  
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Appendix B.  An Urban Herfindahl Index for comparing urban hierarchies of different size 
 

Let an urban structure U = {u1 ,..,uN} be defined by ui = pi / Σi pi  with p being population or any 
other absolute size indicator. Then the Herfindahl Index HI = Σi (ui)2

 can be interpreted as a 
measure of agglomeration ranging from 1 (full agglomeration into 1 city) to 1/N (no 
agglomeration: all cities are of equal size). Because the minimum of HI depends on N, two 
distributions U1 and U2 can not be compared unless N1 = N2. The Normalized Herfindahl Index 
NHI  solves this problem by subtracting the minimum 1/N and rescaling the interval back to (0,1) 
with NHI = 1/(1-1/N) (HI -1/N). 

The correct interpretation of the NHI, however, is that it really measures market 
concentration for different numbers of firms. If one firm achieves 75% of a market with just one 
competitor taking the remaining 25%, market concentration is considered to be higher than in a 4-
firm situation where two pairs of firms take each 37,5% and 12,5%. Table 1 shows that the NHI 
declines from 0,250 to 0,083, and further down to 0,036 in the comparable 8-firm situation.  
 If a distribution is interpreted as an urban hierarchy, however, the NHI does not give 
identical values for identical agglomeration structures. Figure A1 shows the three distributions of 
table 1 on a horizontal line market with locations at a constant distance from each other. The 
distinctive property of this urban hierarchy is an alternating pattern of a first order city and a 
second order city at distance 1. A correct urban agglomeration index would have to be invariant 
to whether we define the urban hierarchy over locations 1-2, 1-4 or 1-8. This is achieved by 
deleting the rescaling of the maximum value to 1 in NHI which gives us an Urban Herfindahl 
Index UHI = N (HI -1/N). In this example, the UHI has a value of 0,250 invariant to N=2, N=4 or 
N=8. 
 As the NHI, the UHI has a minimum of zero when all cities are of the same size but its 
maximum is N-1. This follows our intuitive interpretation: suppose we start to travel from a large 
city at location 1 to the right along the horizontal line. Then, the more “empty” locations7 we pass, 
the more impressive the agglomeration at location 1 becomes. If all locations 2-8 are empty, the 
UHI over the whole space covering 1-8 is 7. The interpretation of this maximum is straightforward: 
one player has become a monopolist winning a game with 7 other players. Contrary to the NHI 
which is always 1 for monopoly, the UHI indicates that winning a game with more players makes 
the winner more competitive. 

A normal application of the UHI will be to compare two urban size distributions U1 and U2 
with N1…N2 regardless of their spatial pattern. Table A1 shows that alternatives like the Zipf 
coefficient β or Gini coefficient γ have the same problem as the NHI8. An identical UHI will only 
imply an identical β or γ when N1=N2.  

                                                      
7 An “empty” city i with ui = 0 is comparable with a firm with a zero market share. Such a firm exists selling other products 
or selling the product on other markets. Empty cities play a role in New Economic Geography models as locations with 
agricultural employment, but with a zero share in national manufacturing employment.  
8 The standard Zipf regression equation is log(Ri )= α - β log(Pi) with ranking number Ri and size Pi for i=1..N. The 
coefficient β changes with N unless the urban hierarchy follows the pure Zipf distribution with β=1. As N  increases, the 
cumulative distribution of U converges to a continuous curve which makes the Gini coefficient γ  also N-dependent.   
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Table B1. Measures of concentration in markets of different size 
% market share 

N                 2 4 8
city/firm           1 75.0 37.5 18.8

2 25.0 12.5 6.3
3 37.5 18.8
4 12.5 6.3
5 18.8
6 6.3
7 18.8
8 6.3

HI 0.625 0.313 0.156
NHI 0.250 0.083 0.036
UHI 0.250 0.250 0.250

Zipf  β 1.585 0.908 0.838
Gini   γ 0.500 0.333 0.286

 
 
 
 

Figure B1. Identical agglomeration in systems of different size 
 
Absolute population size on a horizontal line market 
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