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1. Introduction 
In his seminal work, Marshall (1920) described three different reasons for why economic 

activity tends to agglomerate in space. In new jargon, his theories are now usually labeled 

(1) knowledge spillovers, (2) labor pooling and (3) input-output linkages between 

vertically related industries. A large theoretical literature has been developed that 

provides formal models of these and other theories of agglomeration. It is furthermore 

well documented by now that a high density of economic activity (e.g., in cities) 

increases productivity. Ciccone and Hall (1996) and Ciccone (2002) have shown this for 

the US and for Europe, respectively. For empirical research, however, the principal 

challenge remains that the various theories of agglomeration often lead to observationally 

equivalent outcomes, so that it is difficult to disentangle the (relative) empirical relevance 

of different agglomeration forces (Rosenthal and Strange 2004).1 

An important step forward has been made by Henderson (2003), who uses plant-

level productivity data to address the nature of agglomeration forces. The use of such 

data has several advantages over the more traditional approach based on aggregate data 

for regions or local industries. Firstly, a variety of firm characteristics (such as size or 

age) can be controlled for, which are hidden in aggregate figures but which must be 

sharply distinguished from Marshallian externalities.2 Furthermore, if the data allows 

following single firms over time, one can control for unobserved heterogeneity in order to 

address endogenous spatial sorting. This issue has turned out to be crucial in the 

empirical agglomeration literature (see e.g. Gould 2007, Combes et al., 2008): Does the 

concentration of economic activity really cause productivity gains, or do more productive 

agents (firms or, respectively, workers) self-select into particular regions so that the 

measured agglomeration effects are biased upwards?  

Henderson (2003) argues that localization effects are strongly pervasive. A firm 

that is located in a region specialized in the firm’s sector of activity is found to be 

significantly more productive than an isolated firm in a region where the respective 

                                                 
1 Duranton and Puga (2004) suggest a slightly different terminology of agglomeration forces than Marshall: 
sharing, matching, and learning. They provide an excellent overview of the different theories of 
agglomeration. In the same edited volume, Rosenthal and Strange (2004) describe the current state of art in 
the empirical literature on agglomeration.  
2 We use the terms ‘plant’ and ‘firm’ interchangeably in this paper. For the case of Chile, the majority of 
firms are actually single plants. 
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industry is underrepresented. No evidence is found for urbanization forces. Plant-level 

productivity does not seem to depend on spillovers from other industries or, more 

generally, on the diversity of the surrounding local economic structure. These findings 

have been corroborated by Cingano and Schivardi (2003) and Mayer et al. (2008) for 

Italy and for France, respectively. These studies also rely on disaggregate productivity 

data and find a striking dominance of localization effects but no evidence for 

urbanization effects.3 

The picture that emerges from these studies is consistent with some theories of 

agglomeration, in particular with intra-industry knowledge spillovers. It is not easily 

reconciled, however, with other agglomeration theories that rely on input-output relations 

or on cross-industry effects between vertically related sectors. Furthermore, the complete 

absence of cross-industry spillovers found in these studies is quite puzzling, given that 

several other empirical papers that adopt a more aggregate approach do in fact emphasize 

the relevance of such effects for understanding the phenomenon of agglomeration. 

A starting point in that respect is the paper by Holmes (1999) who reports a 

positive correlation between the degree of localization of an industry and its “purchased 

input intensity”, i.e., its degree of vertical dis-aggregation. Firms rely more heavily on 

outsourcing in specialized environments than in isolation, which suggests that input-

output linkages are important for spatial concentration. But since his work uses cross-

section data of local industries, the direction of the causality and the implications of 

vertical dis-aggregation for individual firm productivity remain unclear. Similarly, Rigby 

and Essletzbichler (2002) find that average labor productivity is higher in metropolitan 

areas with a large density of input-output relations, while Rosenthal and Strange (2001) 

find a higher degree of localization in industries that rely more intensively on 

manufacturing inputs. Finally, Ellison et al. (2007) draw on the co-agglomeration index 

developed in Ellison and Glaeser (1997) and find stronger co-location among industries 

that have closer input-output relations. Common to these contributions is thus the 

                                                 
3 These studies find their roots in the older literature on localization vs. urbanization (sometimes also called 
Marshall-Arrow-Romer vs. Jacobs externalities), which has been pioneered by Glaeser et al. (1992) and 
Henderson et al. (1995). That literature has traditionally relied on aggregate data and addressed the impact 
of local economic structures on employment growth of local industries. Henderson (2003) has been the first 
to extend this literature to plant-level productivity studies.  
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conclusion that vertical linkages are important agglomeration forces. Yet, since these 

studies are based on aggregate data, their results have to taken cautiously. 

The main aim of this study is to unify these different strings in the empirical 

agglomeration literature. We use an extensive data set that covers the universe of Chilean 

manufacturing plants from 1990 to 1999, and that entails detailed information about the 

firms’ inputs. Furthermore, we use the Chilean input-output matrix to account for vertical 

relationships between different industries. We first estimate total factor productivity 

(TFP) at the plant level, and then use this measure as the dependent variable in a panel 

analysis where we control for the number of plants in different industries, several plant 

characteristics as well as several types of fixed effects. With these variables we capture 

important externalities that may be internal to an industry or extend across industries.  

In common with Henderson (2003) we find significantly positive intra-industry 

spillover effects but no evidence for general cross-industry effects or urbanization forces: 

Plant-level productivity is not affected by the presence of firms from other industries. 

This picture changes, however, when we take vertical relations into account. We find that 

productivity of a firm is higher the more plants from important upstream sectors are 

located in the same region. Put differently, there are no ubiquitous cross-industry effects 

between firms from arbitrary other industries. Yet, plants do benefit from other plants 

that belong to particular, vertically related upstream sectors. These cross-industry 

spillovers are quite sizeable, although they tend to be smaller than intra-industry spillover 

effects. Interestingly, a similar positive cross-industry effect cannot be found from plants 

in downstream industries. The number of plants in these sectors has no effect on a firm’s 

TFP level, just as the number of plants in other industries that are neither important 

upstream suppliers nor downstream customers has no effect either.  

We believe that our results reconcile the findings by Henderson (2003), Cingano 

and Schivardi (2004) and Mayer et al. (2008) on the dominance of localization effects, 

and the aforementioned empirical literature following Holmes (1999) that has 

emphasized vertical linkages and cross-industry effects by using a more aggregate 

empirical approach. Furthermore, we emphasize an asymmetry between upstream and 

downstream spillovers, which – to the best of our knowledge – has not been noted in the 

literature so far. The only other study that we are aware of, which also uses disaggregate 
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data to address the relevance of vertical linkages as an agglomeration force, is the recent 

paper by Amiti and Cameron (2007). They use detailed wage data of Indonesian plants 

and also find evidence for input-output linkages. Plants pay significantly higher wages if 

located in regions with abundant upstream suppliers and in regions with large local 

demand. A high concentration of firms from the own industry, however, is found to 

reduce wages. In our paper we address the impact of similar variables on plant-level TFP 

rather than on wages. We find evidence for both spillovers across vertically related 

industries and positive intra-industry effects, the latter of which is consistent with the 

previous literature on localization effects.  

The rest of this paper is organized as follows: In section 2 we describe the data set 

and provide a descriptive overview. Section 3 is devoted to the description of our 

empirical approach, and section 4 presents the results. Section 5 concludes. 

 

2. Data and basic patterns 
The empirical analysis uses establishment- or plant-level data from the manufacturing 

sector of Chile for the period 1990 throughout 1999. The data was obtained from the 

Annual National Industrial Survey (ENIA) carried out by the National Institute of 

Statistics of Chile. This survey covers all Chilean manufacturing plants with 10 or more 

workers. For each plant and year, the ENIA collects data on production, value added, 

sales, employment, wages, exports, investment, depreciation, energy usage, foreign 

technology licenses, and other plant characteristics. Each plant has a unique identification 

number, which allows us to follow plants over time. We have also information about the 

sector in which the plant operates (based on the International Standard Industrial 

Classification, ISIC rev 2), and the region in which the plant is located. Chile is divided 

into 13 regions as shown in a map in figure 1. Using 4-digit industry level price deflators, 

all monetary variables were converted to constant pesos of 1985. The capital stock at the 

plant level was constructed using the perpetual inventory method for each plant.4 

                                                 
4 For the majority of plants, an initial value of the capital stock was available. This initial value was used to 
construct the capital stock data by adding investment and subtracting depreciation for each type of capital 
(machinery and equipment, buildings, and vehicles). For a small group of plants it was not possible to 
construct the stock of capital, so they were dropped from the data set. 
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Table 1 shows that an average of 4,911 plants operated during the period. Since 

Chile is a relatively natural-resource abundant country, it is not surprise that almost half 

of the plants produce natural-resource intensive products.5 But sectors not based on 

natural resources are also important: 40% of plants produce apparel, textiles, metal 

products, printing, plastics, non-electrical machinery, and other chemical products. The 

large abundance of natural resources has determined, in part, that most plants are located 

in regions where natural resources are widely available. But there is a high concentration 

of plants in only a few regions. As seen in Table 2, the Region Metropolitana (RM), 

where the capital city (Santiago) is located, accounts for almost 60% of the total number 

of establishments operating in the manufacturing sector. Taken together, this region and 

three more regions (Biobío, Valparaíso, and Los Lagos) account for 82% of the plants. 

Interestingly, the regions located at the extreme north (Tarapacá, I) and extreme south 

(Magallanes, XII) account for only 3.7% of the total number of plants. 

[TABLE 1 HERE] 

[TABLE 2 HERE] 

[FIGURE 1 HERE] 

To measure productivity at the plant level we estimate a Cobb-Douglas 

production function for each 3-digit industry using the method proposed by Olley and 

Pakes (1996) and later modified by Levinsohn and Petrin (2003), which corrects the 

simultaneity bias associated with the fact that productivity is not observed by the 

econometrician but it may be observed by the firm. The residuals of these regressions are 

then used to measure productivity, or total factor productivity (TFP) at the plant level, 

which we will use below as the dependent variable in the empirical analysis (see 

appendix for details). 

 

3. Empirical approach 
The dependent variable in our analysis is plant level TFP (in logs), which is denoted by 

, , ,ln( )i s r tp  for firm i, sector s, region r, and time period t. Our main control variables 

                                                 
5 Natural-resource intensive products include food, beverages, wood, paper, industrial chemicals, petroleum 
products, rubber, glass, non-metallic minerals, iron, steel, and non-ferrous metals. 
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capture intra-industry and cross-industry spillovers effects across plants, where we take 

into account vertical industry relations. Furthermore, we control for several important 

plant-specific characteristics as well as for several types of fixed effects. We now discuss 

the specification of all control variables in turn. 

 

3.1. Intra-industry and cross-industry spillover effects 
Localized intra-industry spillovers are measured by the number of firms from the same 

industry s and region r at time t. We denote this variable by , ,s r tN . Intra-industry 

spillovers are not necessarily localized, however. They may be internal to industry s but 

extend across regional borders. This is especially true in a small country like Chile. To 

allow for non-localized intra-industry spillovers we also include the number of plants 

from sector s that are located in regions other than r at time t. This variable is denoted by 

, ,s r tN − .  

We do not use (inevitably imperfect) measures for the distance between the 

Chilean regions, but we adopt a somewhat simpler approach that makes use of the unique 

geographical structure of the country. Since Chile basically extends only in the North-

South direction, almost every region has exactly one neighbor in the North and one in the 

South (see Figure 1 above).6 When controlling for , ,s r tN −  we distinguish in some 

specifications between the number of plants (from sector s) that are located in 

neighboring and in non-neighboring regions of r, respectively. Thereby we analyze if 

intra-industry effects are localized in Chile, without having to measure distances 

explicitly.7 

Cross-industry productivity spillovers are measured in a similar way. In the basic 

regression we include the number of firms from different industries located in the same 

region in year t, , ,s r tN− . This general measure does not take into account how closely 

related the different industries are. It is well conceivable, however, that cross-industry 

                                                 
6 There are a few exceptions. The regions of Tarapacá and Magallanes at the top north and the top south, 
respectively, have only one neighbor. The region of Valparaíso (V) is bordered in the south by regions 
Metropolitana (RM) and the Libertador Bernardo O’Higgins (VI), which is in turn bordered by the V and 
the RM on the north.  Thus, regions V and VI have three neighbor regions. 
7 Detailed micro-geographic information about plant locations, comparable to the type of data that is used 
by Rosenthal and Strange (2008) is – to the best of our knowledge – not available for the case of Chile. 
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spillovers are more important among industries that are closely related along the value 

chain. A plant from, say, primary metal manufacturing may be more productive if many 

plants from related industries, such as mineral mining or machinery, are located close by, 

whereas the presence of plants from, say, the apparel or wine industry has no notable 

effect.   

Ideally, we would like to have access to detailed information about each plant’s 

structure of purchased inputs from other plants.  Such data is not available, however, and 

we have to construct proxies. To account for the proximity of the different sectors we 

make use of the aggregate Chilean input-output (I-O) matrix for the year 1996. This 

matrix entails the aggregate value (in pesos) of intermediate goods that every industry s 

purchases from, and sells to every industry l . It turns out that most industry-pairs are 

actually linked as upstream suppliers and as downstream customers at the same time. 

That is, most industries s are both upstream and downstream to every other industry l . 

However, we can use the input-output matrix to construct a “ranking” of industrial 

proximity. For every industry s we can find the k=1,2,3,… most important upstream, and 

the m=1,2,3,… most important downstream industries with which sector s is most closely 

linked in the aggregate. To give an example, the metal products sector (ISIC 381) 

purchases most of its inputs from the iron and steel industry (ISIC 371), followed by the 

non-ferrous metals sector (ISIC 372).8 In Chile, the metal products sector sells most of its 

intermediate products to the food sector (ISIC 311 and 312), followed by the plastics 

products sector (ISIC 356).  

Equipped with this aggregate ranking, we calculate (for every plant i in the data 

set) how many plants from the k=1,2,3,… most important upstream industries, and how 

many plants from the m=1,2,3,… most important downstream industries are located in 

the same region r in year t. These respective numbers of plants in region r are denoted by 

, ,
k
s r tU  and m

srtD , which are subsets of , ,s r tN− . Whereas , ,s r tN−  measures how many plants 

from different industries are located in region r in total, the variables , ,
k
s r tU  and , ,

m
s r tD  

show how many plants are located in region r that can be classified as belonging to an 

important upstream or, respectively, downstream industries of sector s. The value of the 
                                                 
8 Not surprisingly, the iron and steel industry purchases most of its inputs from the iron mining industry, 
while the non-ferrous sector’s main supplier is the copper mining industry. 
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indices k and m define what precisely we mean by “important”. For example, for a plant 

from the metal products sector (ISIC 381), 1
381, ,ISIC r tU  counts the number of plants from 

the iron and steel industry in the same region and year,  2
381, ,ISIC r tD  counts the number of 

plants from the food and from the plastic products sector, and so on. Using these 

definitions we then calculate the number of plants in the same region but not in the most 

important upstream sectors , , , , , ,
U k
s r t s r t s r tN N U−

− −= − , and the number of plants in the same 

region but not in the most important downstream sectors: , , , , , ,
D k
s r t s r t s r tN N D−

− −= − . 

An underlying assumption of this procedure is that vertical relationships between 

industries are roughly stable, both across regions and over time, since we apply the same 

ranking of industrial proximity to plants from all regions and years. We are forced to do 

this, since regional I-O tables do not exist in Chile, and even the national I-O matrix is 

not published on an annual basis. Notice, however, that we do not assume that the precise 

input-output coefficients are the same across all regions and years, but only that the same 

ranking of closely related upstream and downstream sectors applies. We believe that this 

assumption is not very restrictive. The basic specifications that we estimate are given by 
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where , , ,i s r tZ  and the ´sδ  are plant-specific characteristics and different fixed effects, 

which are discussed in greater detail below, and , , ,i s r tε  is a standard error term. Since 

estimating a regression with plant level data but including sector time-varying variables 

may underestimate the standard errors (Moulton, 1990), we correct this problem by 

clustering the standard errors at the 3-digit sector-region-year level. 
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In the basic equation (1) we only account for the number of plants in different 

sectors in general, without taking into account how closely the industries are related. This 

is done in (2) and (3), where we control for the number of plants from the k most 

important upstream and the m most important downstream industries. Below we run 

several specifications where we successively increase the value of k and of m. 

Notice that our measurement of intra- and cross-industry spillovers relies on the 

number of plants. Previous approaches have measured localization effects with an 

aggregate (output or employment) share of sector s in region r, and cross-industry or 

urbanization effects by some aggregate index of the local economic structure (e.g. a 

Herfindahl or diversity index).9 Our specification renders a straightforward interpretation 

of the estimated coefficients: By how much does (log) TFP increase with one additional 

plant in the respective industry and region?  

 

3.2. Plant-specific characteristics 

We include several plant-specific controls , , ,i s r tZ  in the regressions. In particular we 

consider plant size (number of employees), plant age, and the square of both variables, in 

order to account for internal scale economies and life-cycle effects that are likely to affect 

firm productivity. The plant-specific wage premium for skilled workers relative to 

unskilled workers is included in order to capture the skill intensity of firms. Finally, we 

include dummies that indicate whether the plant is an exporter, whether it has foreign 

ownership, and whether it uses foreign technology licenses.  

The inclusion of these dummy variables is motivated by the recent literature on 

firm heterogeneity in international trade (e.g., Bernard and Jensen 1999; Melitz 2003), 

which shows that exporting firms are more productive than non-exporters.10 By 

simultaneously controlling for the plants’ export status and for spillover effects from the 

local industrial environment we also build a bridge between these two active empirical 

literatures on firm productivity. We can, for example, analyze if the impact of spillover 

effects remains robust when controlling for export status, if exporter are affected 

differently from agglomeration forces than non-exporters, etc. 

                                                 
9 See e.g. Cingano and Schivardi (2004). 
10 See López (2005) for a survey on this literature. 



 11

[TABLE 3 HERE] 

Table 3 provides an overview of our control variables. As can be seen from the 

table, there is huge variation in plant-level productivity as well as in plant size. About 

20% of Chilean plants are exporters. Skilled workers receive on average more than twice 

the wage of unskilled workers, again with huge variation across plants. 

 

3.3. Fixed effects and unobserved heterogeneity 

In all regressions we include region-time ( ,r tδ ) and industry-time fixed effects ( ,s tδ ) in 

all regressions. These two sets of dummies filter out idiosyncratic (yet, possibly time 

varying) productivity differentials between particular Chilean regions or industries that 

are independent of spillovers or plant-specific characteristics. This is important for a 

small open economy like Chile where some regions like the capital and primate city 

Santiago, and some sectors like the wine industry play unique roles and are exposed to 

asymmetric shocks from the world market. 

 In addition we include plant-region fixed effects ,i rδ . This is crucial for two 

reasons. Firstly, it acknowledges that productivity of certain plants may be affected by 

location-specific features or comparative advantages (like access to natural resources or 

infrastructure) which are important determinants of location decisions and which have to 

be distinguished from Marshallian externalities (Ellison and Glaeser, 1997).  

 Furthermore, the plant-region fixed effects address the issues of unobserved 

heterogeneity and spatial sorting, which have been central to the agglomeration literature 

in recent years. Spatial sorting is discussed intensively in agglomeration studies that rely 

on individual wage data (see e.g. Glaeser and Maré 2001, Gould 2007, Combes et al. 

2008). As workers choose their location endogenously within a country, it is not clear if 

workers receive higher wages in dense areas because of agglomeration effects, or if the 

wage premium is the result of self-selection of more productive workers into dense areas. 

Including worker fixed effects to control for unobservable worker characteristics is a 

standard procedure of addressing ability bias in this type of studies, given that exogenous 

instruments which predict location but not current productivity are utterly difficult to 

find. The issue for this paper is quite similar: Since plant location is not random, OLS 
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estimation may pick up self-selection of (unobservably) more productive plants into 

particular locations, rather than causal effects of location for individual firm productivity. 

It is essentially for this reason that Henderson (2003) also includes plant-region fixed 

effects in his study.11 We follow this well established approach, which implies that all 

identification comes from the change of the firms’ location over time.  

 

4. Results 
4.1. Basic results 
Table 4 shows our basic results from the benchmark specification, equation (1). In 

column 1 we control for the number of firms from the same industry but different region, 

, ,s r tN , without distinguishing between neighboring and non-neighboring regions. In 

column 2 we make this distinction. Common to both specifications is that we only 

include the number of firms from the same region but different industries, , ,s r tN− , 

without taking into account the degree of vertical industry relations at this point. 

[TABLE 4 HERE] 

 We find clear evidence for the existence of intra-industry productivity spillovers. 

The more plants operate in the own local industry, the larger is plant-level TFP on 

average. An additional plant in the same industry and region increases productivity of 

existing plants by 0.0011% on average. Yet, these intra-industry spillovers do not appear 

to be strongly localized in Chile. We find positive effects of the same magnitude from the 

number of plants in the own industry but in different regions. When distinguishing 

between neighboring and non-neighboring regions, we find no notable difference, which 

suggests that there is no strong distance decay in intra-industry spillover effects. This 

result is at odds with some previous findings from the literature, in particular with those 

by Rosenthal and Strange (2003) and Amiti and Cameron (2007), who find a rather sharp 

distance decay of spillover effects in the US and in Indonesia, respectively.  

                                                 
11 Mayer et al. (2008) also adopt a fixed effects estimation to address unobserved firm heterogeneity.  
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 A plausible reason for this difference may be that Chile is a much smaller country, 

where most economic activity takes place in a geographically more limited area.12 Also 

the primacy of Santiago, where most sophisticated plants are located, may explain parts 

of this result. A plant located in a remote region may benefit from intra-industry 

spillovers from Santiago, rather than from spillovers from other plants located nearby.  

 The second basic result that follows from table 4 is that we find no evidence for 

general cross-industry spillovers or urbanization effects. The number of plants from other 

industries in the same region has no significant impact on TFP. These results are 

consistent with the findings by Henderson (2003) and Cingano and Schivardi (2004), 

who also found only intra- but no robust evidence for inter-industry spillover or 

urbanization effects. We will qualify this finding below, when we distinguish between 

plants from sectors with which industry s has strong vertical relations. 

 Finally, we obtain plausible results for the plant-specific covariates. The 

coefficients for plant age and plant size have the expected sign, although they are not 

significant. Firms that pay higher wage premium to skilled labor are more productive, 

which strongly suggests that skill intensive firms have higher productivity. Yet, the most 

important finding for the plant-specific characteristics, in our view, is the clear evidence 

that exporting firms are more productive. Plants that export are, on average, 5% more 

productive than non-exporters.13 This result, which is in line with the vast recent 

literature in international trade, does not conflict with the impact of intra-industry 

spillovers. As seen in columns (3) and (4) of Table 4, dropping the exporter dummy 

leaves the other coefficients virtually unchanged. No effect can be found, on the other 

hand, for foreign ownership or foreign technology licensing. 

 

                                                 
12 Although the North-South-extension of Chile is huge (around 4,600 km, which is roughly the distance 
between San Francisco to New York, or from Edinburgh to Baghdad.), there is very little manufacturing 
activity in the very North and in the very South (taken together, the two northern regions and the two 
southern regions account for less than 7% of employment and just over 10% of value added). 
13 Since our specifications include plant-location fixed effects, the estimated productivity advantage of 
exporters is lower than what has been found in empirical studies of trade (see, for example, Alvarez and 
López, 2005). 
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4.2. Spillovers from upstream and downstream industries 
In table 5 we report the results for the specifications (2) and (3). In the upper panel A we 

include number of firms (in the same region) from different industries in general, but we 

also control explicitly for the number of firms from the k most important upstream 

industries of sector s. The five columns in the panel refer to the estimations where we 

have set k=1,2,3,4,5, i.e., where we gradually enlarge the circle of “important upstream 

industries”. In panel B of table 5 we report the results of analogous regressions, where we 

distinguish the m=1,2,3,4,5 most important downstream industries of sector s. 14 

[TABLE 5 HERE] 

 Turning to the upper panel A at first, we find that the number of firms in 

important upstream industries has a positive impact on productivity of plants in sector s 

as long as 3k ≤ . That is, we find evidence for cross-industry productivity spillovers from 

plants that belong to the three most important upstream sectors. By increasing the value 

of k, i.e., by applying a laxer definition of an important upstream sector, we obtain 

decreasing coefficients for the productivity spillover. This suggests that an additional 

plant in the single most important upstream sector of industry s raises plant-level 

productivity in s stronger than an additional plant in the second- or third-most important 

supplier industry. Beyond a certain level, when 4k ≥ , we find no significantly positive 

cross-industry spillovers anymore. 

 The finding of positive intra-industry spillovers remains robust. In fact, an 

additional plant in the own industry (and region) raises firm-level TFP stronger than an 

additional plant in the most important upstream industry (0.00154 vs. 0.00087). The 

effect is roughly twice as large. This means that an additional plant in a given region and 

industry increases productivity of plants in the same region and industry by 0.00154%, 

and increases productivity of plants in downstream sectors located in the same region by 

0.00087%. Also the result remains robust that plants from different industries, which do 

not belong to the k most important upstream suppliers, have no effect on plant-level 

productivity in sector s. The estimated coefficients for the plant-specific covariates are 

omitted for brevity, but they are virtually unchanged compared to table 4. 
                                                 
14 As a robustness check we have also estimated specifications where the number of plants in the first, 
second, third, … most important upstream (downstream) sector has been included separately and one at a 
time. Qualitative results have been similar to those reported in the paper. 
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 Turning to the lower panel B of table 5, we have performed a similar exercise for 

the m most important downstream industries. Interestingly, we find no evidence at all for 

productivity spillovers from plants in downstream sectors to plants in sector s. This is 

true even for plants from the single most important downstream industry (m=1). In all 

specifications we obtain coefficients that are not statistically distinguishable from zero.15 

The finding of positive intra-industry spillovers remains again robust.  

 All in all, table 5 suggests that cross-industry productivity spillovers do not exist 

in general, but they do exist for firms that belong to the most important upstream 

suppliers. Intra-industry spillovers also exist, and they tend to be even stronger than the 

spillovers from upstream industries. There is no evidence for productivity spillovers from 

downstream industries, not even from the very closely related ones. 16  

 

4.3. Plant size and spillovers 
Different plants may be affected differently from agglomeration effects. In particular, 

small plants may rely stronger on the externalities created by the industrial environment 

than large plants do. This idea is developed, for example, in Henderson (2003) and in 

Rosenthal and Strange (2003). Henderson finds indeed that localization effects lead to 

stronger productivity gains in small plants.  

 We have checked whether a similar result holds for the cross-industry 

productivity spillovers from vertically related industries that are at the centre of interest 

in this paper. We re-estimated regressions (2) and (3), and included a term that interacts 

the number of plants in upstream (downstream) industries, , ,
k
s r tU  (respectively, , ,

m
s r tD ), 

with individual plant size measured by the number of employees. Table 6 shows the 

results. 

[TABLE 6 HERE] 

                                                 
15 The coefficient for the number of plants in different industries (except for the m most important 
downstream sectors) is now positive and significant in some specifications (for m=1 and m=2). This is due 
to the fact that the most important upstream sectors are included in this figure whereas the number of plants 
in the most important downstream sectors is separately controlled for. 
16 We now also find some evidence for localization of these intra-industry effects, since the effect of an 
additional plant in the same industry is somewhat stronger when the increase occurs in the same region 
(0.00154 vs. 0.00118). Cross-regional spillovers in the same industry remain important, however.  
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 The results strongly suggest that small plants benefit more from spillovers by 

upstream firms than large firms. The coefficient on the number of upstream plants , ,
k
s r tU  

is significantly positive (and decreasing in size when we increase k), but the interaction 

term is negative and highly significant. Spillovers from other industries that are not 

important upstream suppliers still play no significant role, even if we include interaction 

terms. Productivity spillovers from firms in downstream industries continue to be 

insignificant.  

 These results can be seen as a robustness check of our main conclusion that there 

is evidence for intra-industry and for cross-industry productivity spillovers from 

important upstream sectors. These cross-industry spillover effects are more important for 

small than for large plants. This result is consistent with Henderson’s results, who found 

that intra-industry localization effects are also stronger for small firms. 

 

5. Conclusions and discussion 
In this paper we have analyzed the impact of intra- and cross-industry productivity 

spillovers for Chilean plants (1990-1999). We find robust evidence for positive intra-

industry effects, although the effects are not so strongly localized in Chile. We also find 

evidence for cross-industry spillovers from important upstream sectors. There is no 

evidence, however, for productivity spillovers from downstream sectors or from other, 

unrelated industries. 

 Our results are informative for the industrial scope of spillovers. According to our 

findings, firms benefit from other firms that operate in the same industry and experience 

individual productivity gains. This finding is consistent with so-called Marshall-Arrow-

Romer (MAR) externalities, and implies that industrial clustering and regional 

specialization are likely to offer productivity gains to the firms inside the cluster. 

 Yet, regional planners in practice do usually not think of clusters simply as the 

spatial concentration of firms from a single industry, but as a spatial concentration of 

firms from several closely related industries. This policy approach is built on the 

assumption that cross-industry spillovers exist, but the empirical literature on 
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agglomeration and firm productivity has not found much supportive evidence for such 

effects so far.  

 In this paper we account for the vertical relationships between different industries. 

Thereby we distinguish, for the first time, productivity spillovers between closely related 

industries and spillovers between sectors that are not closely related. We find that no 

ubiquitous cross-industry productivity spillovers exist. Firms do not benefit from other 

firms in arbitrary industries. We do find, however, that firms benefit from other firms that 

are active in closely related (upstream) industries.  

 Previous studies that addressed the impact of spillovers on plant-level 

productivity (Henderson 2003, Cingano and Schivardi 2004, Mayer et al. 2008) have 

strongly emphasized the importance of intra-industry effects (MAR externalities) only. 

Our results are not opposite to theirs, since we also find that intra-industry effects are the 

most important type of spillover. Yet, we also find evidence for the idea of “cross-

fertilization”, sometimes attributed to the name of Jacobs-externalities. This cross-

fertilization does not arise between arbitrary industries, however.  

 Firms benefit from adjacent upstream suppliers, and are more productive the more 

plants from important upstream industries are co-located in the same region. The 

producer of the intermediate goods is not significantly more productive, however, if the 

downstream customers are located close by. How should one interpret this result on the 

asymmetry between upstream and downstream industries? One possible interpretation 

relies on the concept of knowledge spillovers that may be behind the productivity effects 

that we have measured in this paper. According to our results, there are Jacobs-type inter-

industry knowledge spillovers which flow into the same direction as the intermediate 

goods flow along the vertical value chain: From upstream to downstream industries, but 

not the other way around. Such knowledge flows may consist of information about 

specific characteristics of the intermediate goods, how to handle and use the purchased 

inputs, etc. Knowledge flows from downstream to upstream firms, e.g. about the specific 

needs of the local customers, do not seem to be so pervasive – at least in Chile.  
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Appendix: The Levinsohn and Petrin Technique 
Consider the following Cobb-Douglas production function: 

 ,s u
it k it s it u it it ity k l lβ β β ω ε= + + + +       (A1) 

where ity  is the log of value added, itk  is the log of capital, s
itl  is the log of skilled labor, 

and u
itl  is the log of unskilled labor. The terms itω  and itε  are unobserved by the 

econometrician but itω  is observed by the firm. This introduces a simultaneity problem, 

since itω  is likely to be correlated with the choice of capital and labor. Levinsohn and 

Petrin (2003) assume that ( , )it it it itm m k ω= , where itm  is the intermediate input, and show 

that this relationship is monotonically increasing in itω . Thus, the intermediate input 

function can be inverted to obtain ( , )it it it itk mω ω= . Then, equation (A1) becomes: 

 ( , ) ,s u
it s it u it it it ity l l k mβ β φ ε= + + +       (A2) 

where ( , ) ( , )it it k it it it itk m k k mφ β ω= + . Levinsohn and Petrin estimation involves two 

steps. In the first step, equation (A2) is estimated treating ( , )it itk mφ  non-parametrically, 

which gives the estimates for the labor inputs. The second step identifies kβ . Assuming 

that itω  follows a first-order Markov process: 1[ / ]it it it itEω ω ω ξ−= + , and given that itk  is 

decided at t-1, then [ / ] 0it itE kξ = , which implies that itξ  and itk are uncorrelated. This 

moment condition is then used to estimate the elasticity of capital kβ .  As in Levinsohn 

and Petrin (2003), we use consumption of electricity as the intermediate input that allows 

the identification of the elasticity of capital. Finally TFP is calculated as: 

� � �( )exp .s u
k s uit it it it itTFP y k l lβ β β= − − −  
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Table 1: Number of Plants by 3-Digit ISIC Sector and Year 

                        
 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 Average 

            
Food 1,339 1,349 1,389 1,376 1,356 1,338 1,450 1,350 1,350 1,247 1,354 
Food  - Miscellaneous 71 80 79 78 84 85 93 83 84 78 82 
Beverages 95 93 94 87 86 84 86 86 88 83 88 
Textiles 364 377 386 357 360 356 369 333 307 277 349 
Apparel 312 335 349 337 329 313 366 293 260 255 315 
Leather Products 51 54 62 58 54 48 48 39 35 32 48 
Footwear 154 157 159 146 168 161 167 144 130 108 149 
Wood Products 328 320 327 390 385 380 398 367 346 312 355 
Furniture 117 123 129 150 155 153 184 159 155 137 146 
Paper 66 71 73 69 77 83 86 81 78 73 76 
Printing 188 200 209 224 217 212 226 208 199 195 208 
Industrial Chemicals 73 74 79 74 71 67 65 64 67 58 69 
Other Chemicals 171 184 192 195 198 198 208 185 183 172 189 
Petroleum Refineries 2 2 2 2 2 3 3 2 5 4 3 
Petroleum Products 17 20 23 20 21 19 20 20 18 16 19 
Rubber Products 52 57 59 67 67 64 65 56 63 56 61 
Plastics 198 212 221 261 268 283 271 254 234 225 243 
Ceramics 20 22 21 21 19 24 20 14 11 7 18 
Glass 18 17 16 19 18 19 22 21 21 22 19 
Non-Metallic Minerals 117 134 147 148 170 164 175 159 158 152 152 
Iron and Steel 31 32 31 28 35 27 25 27 24 27 29 
Non-Ferrous Metals 37 35 34 41 32 45 49 46 48 33 40 
Metal Products 351 374 405 420 444 475 532 493 482 429 441 
Non-Electrical Machinery 178 188 192 209 199 225 236 213 217 184 204 
Electrical Machinery 50 59 60 63 63 63 72 58 59 51 60 
Transport Equipment 107 116 118 122 122 133 125 115 108 92 116 
Professional Equipment 18 19 20 18 19 20 23 22 20 19 20 
Other Manufacturing 49 54 55 56 59 65 63 68 65 56 59 
Total Manufacturing 4,574 4,758 4,931 5,036 5,078 5,107 5,447 4,960 4,815 4,400 4,911 
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Table 2: Number of Plants by Region and Year 

                        
Region 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 Average 
            
Tarapacá 132 128 122 118 132 128 131 134 139 117 128 
Antofagasta 108 107 114 107 98 119 136 128 132 103 115 
Atacama 48 52 60 52 52 55 57 49 53 32 51 
Coquimbo 91 96 107 107 105 93 99 99 99 87 98 
Valparaíso 360 359 398 390 391 400 423 365 367 353 381 
Libertador Bernardo O’Higgins 130 126 135 135 124 128 141 137 120 96 127 
Maule 174 176 184 194 194 195 196 189 177 168 185 
Biobío 479 476 474 531 535 518 539 535 549 521 516 
Araucanía 99 94 100 104 109 104 114 101 117 117 106 
Los Lagos 182 185 199 209 203 215 234 211 223 195 206 
Aisén 18 20 20 20 21 20 20 18 18 17 19 
Magallanes 64 57 60 54 55 56 52 50 48 39 54 
Metropolitana – Santiago 2,689 2,882 2,958 3,015 3,059 3,076 3,305 2,944 2,773 2,555 2,926 
Total Country 4,574 4,758 4,931 5,036 5,078 5,107 5,447 4,960 4,815 4,400 4,911 

 



 23

 
Table 3: Descriptive Statistics 

            
Variable Obs Mean Std. Dev. Min Max 
      
ln(Total factor Productivity) 40,454 6.9 1.1 -4.6 12.7 
ln(Employment) 40,454 3.8 1.0 1.1 8.3 
Export Dummy 40,454 0.2 0.4 0 1 
Foreign Ownership Dummy 40,454 0.1 0.2 0 1 
ln(Age) 40,454 2.1 0.8 0 3.0 
Foreign Licenses Dummy 40,454 0.1 0.2 0 1 
Wage Premium 40,454 2.7 3.0 0 169.7 
Number of Plants Same Industry and Region 40,454 166.7 155.0 1 577 
Number of Plants Same Industry Different Region 40,454 359.1 451.4 1 1,440 
Number of Plants Same Region Different Industry 40,454 1,743 1,232 7 3,304 
Number of Plants in the Most Important Upstream Sector (same region) 40,454 81.0 120.8 0 635 
Number of Plants in the Two Most Important Upstream Sectors (same region) 40,454 184.8 189.0 0 800 
Number of Plants in the Three Most Important Upstream Sectors (same region) 40,454 262.8 241.6 0 896 
Number of Plants in the Four Most Important Upstream Sectors (same region) 40,454 325.5 299.2 0 1,218 
Number of Plants in the Five Most Important Upstream Sectors (same region) 40,454 354.3 327.3 0 1,218 
Number of Plants in the Most Important Downstream Sector (same region) 40,454 192.2 224.9 0 635 
Number of Plants in the Two Most Important Downstream Sectors (same region) 40,454 298.6 310.0 0 1,038 
Number of Plants in the Three Most Important Downstream Sectors (same region) 40,454 371.5 339.0 0 1,183 
Number of Plants in the Four Most Important Downstream Sectors (same region) 40,454 457.7 375.1 0 1,301 
Number of Plants in the Five Most Important Downstream Sectors (same region) 40,454 492.7 381.8 0 1,301 
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Table 4: Basic Results 

        

  (1) (2) (3) (4) 
     
Number of Plants Same Industry and Region  0.00108 0.00110 0.00108 0.00109 
 (2.43)* (2.45)* (2.46)* (2.48)* 
Number of Plants Same Industry Different Regions  0.00117  0.00118  
 (3.65)**  (3.69)**  
Number of Plants Same Industry Neighbor Regions   0.00106  0.00105 
  (2.60)**  (2.59)** 
Number of Plants Same Industry Non-Neighbor Regions  0.00120  0.00121 
  (3.59)**  (3.64)** 
Number of Plants Same Region Different Industry 0.00015 0.00015 0.00014 0.00014 
 (0.46) (0.46) (0.41) (0.41) 
Plant Employment 0.03282 0.03273 0.03481 0.03470 
 (0.60) (0.60) (0.64) (0.63) 
Plant Employment Squared -0.01221 -0.01219 -0.01203 -0.01201 
 (1.79)+ (1.79)+ (1.77)+ (1.77)+ 
Plant Export Dummy 0.05264 0.05257   
 (4.30)** (4.29)**   
Plant Foreign Ownership Dummy 0.02725 0.02723 0.02987 0.02984 
 (0.89) (0.89) (0.98) (0.98) 
Plant Age 0.03118 0.03126 0.03209 0.03218 
 (1.40) (1.40) (1.44) (1.44) 
Plant Age Squared -0.00058 -0.00066 -0.00064 -0.00073 
 (0.03) (0.04) (0.04) (0.04) 
Plant Foreign Licenses Dummy 0.02022 0.02031 0.02124 0.02133 
 (1.23) (1.24) (1.29) (1.30) 
Plant Wage Skilled / Wage Unskilled Labor 0.01713 0.01713 0.01717 0.01717 
 (8.75)** (8.75)** (8.75)** (8.75)** 
Observations 40,454 40,454 40,454 40,454 
R-squared 0.8501 0.8501 0.8500 0.8500 
        

     
Robust t-statistics in parentheses. **, *, +: significant at 1%, 5%, and 10%. Standard errors were clustered at the 
industry-region-year level. All regressions include industry-year and region-year dummy variables. The dependent 
variable is the natural log of TFP for each plant. Employment, and Age are in logs. 
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Table 5: Externalities from Upstream and Downstream Sectors 

            
Panel A: From Upstream Sectors 

 (1) (2) (3) (4) (5) 
      
Number Plants Same Industry and Region 0.00154 0.00154 0.00152 0.00117 0.00113 
 (3.14)** (3.14)** (3.13)** (2.60)** (2.52)** 
Number Plants Same Industry Different Regions 0.00118 0.00116 0.00113 0.00113 0.00116 
 (3.67)** (3.61)** (4.57)** (3.50)** (3.61)** 
Number Plants in Upstream Sectors Same Region 0.00087 0.00083 0.00083 0.00040 0.00027 
 (2.14)* (2.08)* (2.30)* (1.11) (0.79) 
Number Plants in Other Sectors Same Region 0.00057 0.00060 0.00061 0.00011 0.00012 
 (1.61) (1.70)+ (1.89)+ (0.31) (0.34) 
Number of Observations 40,454 40,454 40,454 40,454 40,454 
R-Squared 0.8501 0.8501 0.8501 0.8501 0.8501 
            

Panel B: From Downstream Sectors 
 (1) (2) (3) (4) (5) 

      
Number Plants Same Industry and Region 0.00166 0.00165 0.00109 0.00109 0.00113 
 (3.35)** (3.34)** (2.46)* (2.44)* (2.51)** 
Number Plants Same Industry Different Regions 0.00105 0.00102 0.00112 0.00119 0.00120 
 (3.19)** (3.07)** (3.37)** (3.64)** (3.70)** 
Number Plants in Downstream Sectors Same Region 0.00046 0.00042 0.00004 0.00020 0.00028 
 (1.23) (1.14) (0.10) (0.55) (0.76) 
Number Plants in Other Sectors Same Region 0.00071 0.00067 0.00018 0.00014 0.00012 
 (2.00)* (1.90)+ (0.52) (0.42) (0.36) 
Number of Observations 40,454 40,454 40,454 40,454 40,454 
R-Squared 0.8501 0.8501 0.8501 0.8501 0.8501 
            
      
Robust t-statistics in parentheses. **, *, +: significant at 1%, 5%, and 10%. Standard errors were clustered at 
the industry-region-year level. All regressions include plant controls, industry-year and region-year dummy 
variables. The dependent variable is the natural log of TFP of each plant. (1): 1 sector upstream/ downstream; 
(2): 2 sectors upstream/downstream; (3): 3 sectors; (4): 4 sectors; (5): 5 sectors. 
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Table 6: Externalities from Upstream and Downstream Sectors with Interaction Terms 

            
Panel A: From Upstream Sectors 

 (1) (2) (3) (4) (5) 
      
Number Plants Same Industry and Region 0.00109 0.00107 0.00104 0.00116 0.00112 
 (2.41)* (2.38)* (2.34)* (2.57)* (2.47)* 
Number Plants Same Industry Different Regions 0.00118 0.00115 0.00114 0.00111 0.00115 
 (3.67)** (3.60)** (3.55)** (3.47)** (3.59)** 
Number Plants in Upstream Sectors Same Region 0.00108 0.00097 0.00097 0.00086 0.00074 
 (2.23)* (2.17)* (2.30)* (2.18)* (1.91)+ 
Number Plants Upstream Sectors Same Region * Employment -0.0002 -0.0002 -0.0002 -0.0001 -0.0001 
 (2.78)** (3.08)** (3.49)** (3.20)** (3.63)** 
Number Plants in Other Sectors Same Region 0.00021 0.00019 0.00017 0.00015 0.00014 
 (0.61) (0.56) (0.49) (0.44) (0.42) 
Number Plants in Other Sectors Same Region * Employment -3E-05 -3E-05 -2E-05 -2E-05 -2E-05 
 (3.29)** (2.11)* (1.23) (1.42) (1.22) 
Number of Observations 40,454 40,454 40,454 40,454 40,454 
R-Squared 0.8503 0.8503 0.8503 0.8503 0.8503 
            

Panel B: From Downstream Sectors 
 (1) (2) (3) (4) (5) 

      
Number Plants Same Industry and Region 0.00162 0.00161 0.00108 0.00107 0.00155 
 (3.27)** (3.25)** (2.42)* (2.39)* (3.10)** 
Number Plants Same Industry Different Regions 0.00103 0.001 0.00109 0.00117 0.00117 
 (3.13)** (3.03)** (3.33)** (3.59)** (3.62)** 
Number Plants in Downstream Sectors Same Region 0.00029 0.00047 0.00022 0.00027 0.00054 
 (0.71) (1.21) (0.56) (0.71) (1.30) 
Number Plants Downstream Sectors Same Region * Employment 0.00003 -3E-05 -6E-05 -3E-05 0.00004 
 (0.77) (0.84) (1.51) (0.84) (1.05) 
Number Plants in Other Sectors Same Region 0.00085 0.00077 0.00029 0.00028 0.00083 
 (2.39)* (2.19)* (0.84) (0.82) (2.31)* 
Number Plants in Other Sectors Same Region * Employment -5E-05 -4E-05 -4E-05 -4E-05 -7E-05 
 (4.77)** (3.70)** (2.60)** (2.74)** (3.93)** 
Number of Observations 40,454 40,454 40,454 40,454 40,454 
R-Squared 0.8503 0.8503 0.8503 0.8503 0.8503 
            
      
Robust t-statistics in parentheses. **, *, +: significant at 1%, 5%, and 10%. Standard errors were clustered at the industry-
region-year level. All regressions include plant controls, industry-year and region-year dummy variables. The dependent 
variable is the natural log of TFP of each plant. (1): 1 sector upstream/ downstream; (2): 2 sectors upstream/downstream; (3): 
3 sectors; (4): 4 sectors; (5): 5 sectors. 
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Figure 1: Regions of Chile 


